On Solving Nonlinear Moving Boundary Problems with Heterogeneity Using the Collocation Meshless Method

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SPLINE COLLOCATION METHOD FOR SOLVING BOUNDARY VALUE PROBLEMS

The spline collocation method is used to approximate solutions of boundary value problems. The convergence analysis is given and the method is shown to have second-order convergence. A numerical illustration is given to show the pertinent features of the technique.  

متن کامل

A meshless local boundary integral equation (LBIE) method for solving nonlinear problems

A new meshless method for solving nonlinear boundary value problems, based on the local boundary integral equation (LBIE) method and the moving least squares approximation, is proposed in the present paper. The total formulation and a rate formulation are developed for the implementation of the present method. The present method does not need domain and boundary elements to deal with the volume...

متن کامل

Sinc-Collocation Method for Solving Linear and Nonlinear System of Second-Order Boundary Value Problems

Sinc methods are now recognized as an efficient numerical method for problems whose solutions may have singularities, or infinite domains, or boundary layers. This work deals with the sinc-collocation method for solving linear and nonlinear system of second order differential equation. The method is then tested on linear and nonlinear examples and a comparison with B-spline method is made. It i...

متن کامل

A Moving Collocation Method for Solving

A new moving mesh method is introduced for solving time dependent partial diierential equations (PDEs) in divergence form. The method uses a cell-averaging cubic Hermite collocation discretization for the physical PDEs and a three point nite diierence discretization for the PDE which determines the moving mesh. Numerical results are presented for a selection of diicult benchmark problems, inclu...

متن کامل

Solving the Laplace equation by meshless collocation using harmonic kernels

We present a meshless technique which can be seen as an alternative to the Method of Fundamental Solutions (MFS). It calculates homogeneous solutions of the Laplacian (i.e. harmonic functions) for given boundary data by a direct collocation technique on the boundary using kernels which are harmonic in two variables. In contrast to the MFS, there is no artifical boundary needed, and there is a f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Water

سال: 2019

ISSN: 2073-4441

DOI: 10.3390/w11040835